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On the Jaynes-Cummings model with multiphoton 
transitions in a cavity 

E I Aliskenderovt, K A Rustamovt, A S Shumovsky and  Tran Quang 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
P 0 Box 79, Moscow 101000, USSR 

Received 9 March 1987, in final form 22 July 1987 

Abstract. The Jaynes-Cummings model with multiphoton transitions in a cavity is 
examined, and an exact solution of the master equation for the density matrix is found. 
Absorption and emission spectra are investigated. 

1. Introduction 

The Jaynes-Cummings model (Jaynes and Cummings 1963, Yo0 and Eberly 1985) of 
a two-level atom interacting with the electromagnetic field in an ideal cavity is one of 
the few exactly soluble models in quantum optics. It enables one to calculate all the 
quantum-mechanical properties of a system. It predicts many interesting effects such 
as vacuum field Rabi oscillations (Sanchez-Mondragon et a1 1983, Agarwal 1984,1985), 
quantum collapse and revival (Yo0 and Eberly 1985 and references therein). The 
quantum collapse and  revival have been observed experimentally by Rempe et a1 (1987). 

In recent papers Agarwal and Puri (1986a, b),  Barnett and Knight (1986) and 
Filipowicz et a1 (1986) have studied the effects of dissipation in the Jaynes-Cummings 
model and  their influence on revivals and other quantum features; in particular, the 
absorption and  emission spectra have been calculated. Single-mode m-photon absorp- 
tion and m-photon emission processes in a two-level atomic system have been con- 
sidered by Zubairy and  Yeh (1980). Other multiphoton processes in a lossless cavity 
have recently been extensively investigated in a number of papers (Singh 1982, Mav- 
royannis 1985, Allen and Stroud 1982, Eberly and Krasinski 1984, Shumovsky et a1 
1985, 1986). 

In this paper we consider the Jaynes-Cummings model with multiphoton transitions 
in the presence of cavity-relaxation effects. In order to solve the problem we follow 
the procedure presented by Agarwal and Puri (1986) and Shumovsky et a1 (1985,1986). 

2. Solution for density-matrix elements 

The Jaynes-Cummings model with multiphoton transitions describes the interaction 
of a single-model electromagnetic field with a two-level atom via m-photon processes. 

i Permanent address: Institute of Cosmic Research, 370159 Baku, USSR. 
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The Hamiltonian for this model in the R W A  and electric dipole approximation is 

H = fiw,ST+ hwafa+fig(a+"'S-+a"S')  (1) 

where S'.' are the spin-; operators, a (a ' )  is the annihilation (creation) operator of 
the radiation field. The parameter g is the constant of atom-mode coupling. Here w ,  
is the transition frequency of the atom and w is the mode frequency, and they obey 
the condition: 

w , - m w = b  (2) 

where A is the detuning parameter. In Hamiltonian (1) the Stark shifts of the atomic 
levels have been ignored (Agarwal 1985). 

Further, we shall assume that a field can decay at the rate 2 ~ .  The density matrix 
for the combined atom-field system by the standard master equation techniques is 
(Agarwal 1986a, b, Barnett and Knight 1986) 

(3) @ / a t  = i[ H, p ]  - K ( a +  ap - 2apa' + pa'a)  = Lp. 

The Hamiltonian H causes transitions between the states In, e )  and In + m, g). Field 
and atom occupation numbers change at the same time. The relaxation in the cavity 
only changes the photon number. For example, if the initial state of the system is 
In, g), then the system can be found in any of the states 

lP9 g) 

1 %  e )  q = O , l ,  . . . ,  n-m.  

p = 0,1, . . . , n 

For the initial state 10, e ) ,  the states to be considered are Im, g),  1m - 1, g), . . . , 10, g), 

(4) 

( 5 )  

The density matrix elements now satisfy 

(0, g/& e ) = i ( m w + ~ ) ( o ,  glplo, e)+igJm?(O, glplm, g) 

(0, g l P h  g) = (imw - K ~ ) ( O ,  glplm, g ) + i g m ( O ,  glplo, e). 

The results following from (4) and (5) are 

(0, glplo, e )  =- {[(zI - imw + K ~ ) ( O ,  glp(O)lO, e )  
1 

ZI -z2 

Using these solutions we can calculate an absorption spectrum for the model, assuming 
in addition that our model interacts with a weak-probe field. For Rydberg atoms the 
probe field will be a microwave field of frequency U. Considering the selection rule 
we assume that the absorption of the probe field is one- or two-photon processes if m 
is odd or even, respectively. Then, the master equation (3)  will be 

(9) dp/a t  = Lp - i [ (  G" 'S' e""' + HC) ,  p]  
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where E = 1 if m is odd and E = 2 if m is even. The values G'" and G'" are the 
coupling constants of the atom with the microwave field via one-photon (if m is odd)  
or two-photon (if m is even) processes. 

Using the perturbation procedure (Agarwal and Puri 1986a) one can calculate the 
time-average rate of absorption W in the form 

W = -~EV(G'"I '  Re d7 Tr(S+ eLT[S-, p ( O ) ] ) .  (10) 1,: 

loX 

In the case, when our cavity is at zero temperature, the initial density matrix p(0) 
is 

d o )  = Io, gxo, gl 

W = ~ E V ~ G " ' ! ~  Re d7 e-le"'Tr[S' eL'lO, g)(O, el]. (12) 

(11) 

and hence 

The operator eLr(O, g)(O, el satisfies (4) and hence 

eL'IO, gxo,  el = 4 0 ,  g)(O, e!+P(. ) IO,  gxm, gl ( 1 3 )  

where 

zl - i mw + Km 
ZI - z2 

z2 - imw + Km e . - ~ T  a ( 7 )  = e'i' - 
21 - z2 

igJm! i g J m !  
ZI -- zz z ,  - Z? 

B ( 7 )  =- eziT -- e'?' 

Substituting ( 1 3 )  in (12) and simplifying ( 1 2 )  we get 

W = ~ E V ~ G ' " I '  Re & ( i s v )  

where 

We will consider the case of exact resonance when A = wo - mu = 0 and 

z , , , = i w o - f ~ m  * j ( ~ ~ m ' - 4 g * m ! ) ' ' ~ .  

Here, we can consider the following cases: 

(9 ~ 'm ' -4g 'm!>0 .  

In this case, from (14), ( 1 6 )  and (17) we get 

W = 2~v lG"'I~  
1 

E Y  - w,) '+i[~m - (,'m2-4g2m!)'"]' 

1 + 
( E V  - W O ) ?  + a[ Km + ( K2m2 - 4g'm !)I"]? 

In the case of a bad cavity K2m2 >> 4g2m! the spectrum (19) has only a single peak in 
the position E V  = wo.  

(ii) ~ ' m ' - 4 g ? m ! < 0 .  (20) 
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In this case by substituting (14) and (17)  into (16), we obtain 

For the good cavity case, K2m2<< 4g2m!, (21) shows that the spectrum is a doublet 
E V  = w o k  g m ,  the width of each doublet being ~ m / 2 .  It should be noted that in the 
case of multiphoton absorption the widths of lines are proportional to m. 

3. Emission spectra for multiphoton processes 

Following Agarwal and Puri (1986a), we define the transient spectrum of the radiation 
that leaks out as 

S ( V ,  ~ ) = 2 r p  ReCA,(2r+5,)--’[1(r+5J+iv-A,)-’  
I] 

x {exp( -5,T) - exp[- T(T - A ,  + iv)]} 

- ( r+ A ,  -iv)-’{exp[-(r+ i v  - A,)T]  - e x p ( - ~ ~ ) ) I ,  (22) 

where we assume that the correlation function has the structure 

is the bandwidth of the detector, T is the time at which the spectrum is evaluated 
and p is a measure of the leakage of the field energy. 

Using regression theory, one can show that 

( a ’ ( t + 7 ) a ( t ) ) = T r [ a T  eLra eL’p(0)] (24) 

where the initial density matrix p ( 0 )  is 10, e)(O, e / .  This initial state is chosen keeping 
in view the problem of pure spontaneous emission. 

Using (3)  we define equations of motion for the operator 

Resulting is a closed set of equations 
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These equations are solved by the Laplace transforms, the results of which are given 
by the matrix relation 

&z)  = P-'(z) 

X 

Zo = Z + M K  cL1.*=(m, glplo, e)*((), elplm, g) 

43,4=(0, elplo, e)*(m, glplw g) 

where the polynomial P(z) i s  

P(Z) = ( Z  + m K ) ' +  ( 2  + mK)'(A' +4g2m ! - K7m2) - K'm'A'. 

If we denote by M the 4 x 4  square matrix in (26), then it can be shown that 

eLTa eL'p(0) =(e+"),* eLTJ;;;lm - 1, g)(O, e l+ (e -n ' )14  eL'v%lm - 1, g)(m, gl. 

We can further show that for the operators 

eLr /m - 1, g)(O, el = (Im - 1, g)(O, el), 

eL71m - 1, g)(m, g / =  (Im - 1, g)(m,  gl), 

and 

we have a closed set of equations 

- i (w+A)+(m-l)K - igv 'X I] [l~m-l,g)(O,el]  = o ,  
(2m - 1 ) ~  - i w  m - I, g)(m, g/  

The following results are obtained from (30): 

Let us denote the 2 x 2  square matrix in (30) by N.  Then, using the solution of (30) 
in (29), one can show that 

(34) ( a  + ( t + 7 )  a ( I )) = m (e- '" l :(e- " ) I + m (e- "' 14(  e Y T  
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The relevant elements of eCNr are given by (31) and (32) 

[(x, - i ( w  + A )  + ( m  - 1 ) ~ )  er, '  - (x? - i ( w  + A )  i- ( m  - 1 ) ~ )  e">']. 
1 

XI -x2 
(e-") -- 

2 1  - 

( 3 5 )  

A complete spectrum of spontaneous emission can now be obtained using (34) and 
(23) in ( 2 2 ) .  In the long-time limit TT>> 1 the spontaneous emission spectra consist 
of several lines whose positions and  widths are determined by 

W A ,  - 77,) I-+ Re( 7, - A , ) .  

For the case of a good cavity on resonance, (33) shows that the emission spectrum 
has the form of a doublet, the lines of which are positioned at Y = w * g m  and have 
width r+  K($m - 1). On the other hand, for large A spontaneous emission lines occur 
at the positions w + A,  w and their widths are I-+ K (  m - 1) and r+ ~ ( 2 m  - 1) respec- 
tively. 

It should be noted in the case m = 1 our results reduce to those obtained by Agarwal 
and Puri (1986a). 
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